Avoiding rational distances

Ashutosh Kumar
Hebrew University of Jerusalem

February 2, 2015

Komjáth's question

Let $X \subseteq \mathbb{R}^{n}$. Must there exist a subset Y of X such that X and Y have same Lebesgue outer measure and the distance between any two points of Y is irrational?

Some remarks

- If X is Borel, such a Y can always be found - List all positive measure compact subsets of X and inductively choose a point from each one of them which is not at a rational distance from the previously chosen points.

Some remarks

- If X is Borel, such a Y can always be found - List all positive measure compact subsets of X and inductively choose a point from each one of them which is not at a rational distance from the previously chosen points.
- Under CH, this works for all sets X. So the answer is consistently yes.

Some remarks

- If X is Borel, such a Y can always be found - List all positive measure compact subsets of X and inductively choose a point from each one of them which is not at a rational distance from the previously chosen points.
- Under CH, this works for all sets X. So the answer is consistently yes.
- Komjath showed that one can color \mathbb{R}^{n} by countably many colors such that no two points of same color are at a rational distance. Hence there is always a positive outer measure subset avoiding rational distances.

Some remarks

- If X is Borel, such a Y can always be found - List all positive measure compact subsets of X and inductively choose a point from each one of them which is not at a rational distance from the previously chosen points.
- Under CH, this works for all sets X. So the answer is consistently yes.
- Komjath showed that one can color \mathbb{R}^{n} by countably many colors such that no two points of same color are at a rational distance. Hence there is always a positive outer measure subset avoiding rational distances.
- We showed that when $n=1$ the answer is yes.

Some remarks

- If X is Borel, such a Y can always be found - List all positive measure compact subsets of X and inductively choose a point from each one of them which is not at a rational distance from the previously chosen points.
- Under CH, this works for all sets X. So the answer is consistently yes.
- Komjath showed that one can color \mathbb{R}^{n} by countably many colors such that no two points of same color are at a rational distance. Hence there is always a positive outer measure subset avoiding rational distances.
- We showed that when $n=1$ the answer is yes.
- We don't know the answer in higher dimensions.

Sometimes ZFC is not enough

- In the Cohen model for $\neg \mathrm{CH}$, there is a null set $N \subseteq \mathbb{R}^{+}$such that for every non null set of reals X there are $x, y \in X$ such that $|x-y| \in N$.

Sometimes ZFC is not enough

- In the Cohen model for $\neg \mathrm{CH}$, there is a null set $N \subseteq \mathbb{R}^{+}$such that for every non null set of reals X there are $x, y \in X$ such that $|x-y| \in N$.
- Komjáth constructed a model in which there is a non meager subset X of plane such that every non meager subset Y of X contains three collinear points and the vertices of a right triangle.

Sometimes ZFC is not enough

- In the Cohen model for $\neg \mathrm{CH}$, there is a null set $N \subseteq \mathbb{R}^{+}$such that for every non null set of reals X there are $x, y \in X$ such that $|x-y| \in N$.
- Komjáth constructed a model in which there is a non meager subset X of plane such that every non meager subset Y of X contains three collinear points and the vertices of a right triangle.
- Shelah has obtained similar results for measure.

Forcing

The main tool in the proof is a result of Gitik and Shelah on forcing with sigma ideals which says the following:

Theorem
Let \mathcal{I} be a sigma ideal over a set X. Then forcing with \mathcal{I} is not isomorphic to the product of Cohen and Random forcings.

Forcing

The main tool in the proof is a result of Gitik and Shelah on forcing with sigma ideals which says the following:

Theorem

Let \mathcal{I} be a sigma ideal over a set X. Then forcing with \mathcal{I} is not isomorphic to the product of Cohen and Random forcings.

Corollary

Suppose T is a subtree of $\omega^{<\omega}$ such that every node in T has at least two children and $X \subseteq \mathbb{R}^{n}$. Suppose $\left\langle X_{\sigma}: \sigma \in T\right\rangle$ satisfies

- $X_{\langle \rangle}=X$
- For each $\sigma \in T, X_{\sigma}=\bigsqcup\left\{X_{\sigma n}: n<\omega, \sigma n \in T\right\}$ and
- X_{σ} has full outer measure in X

Then there exists $Y \subseteq X$ such that Y has full outer measure in X and for each $\sigma \in T, X_{\sigma} \backslash Y$ has full outer measure in X.

References

目 P．Komjáth：Set theoretic constructions in Euclidean spaces， New Trends in Discrete and Computational Geometry（J． Pach，ed．），Springer，1993，303－325
围 M．Gitik and S．Shelah：More on real－valued measurable cardinals and forcing with ideals，Israel J．Math 124，2001， 221－242
囯 A．Kumar，Avoiding rational distances，Real Analysis Exchange，Vol．38（2），2012／13，493－498

